Collagen microstructural factors influencing optic nerve head biomechanics.

نویسندگان

  • Liang Zhang
  • Julie Albon
  • Hannah Jones
  • Cecile L M Gouget
  • C Ross Ethier
  • James C H Goh
  • Michaël J A Girard
چکیده

PURPOSE Previous studies have suggested that the lamina cribrosa (LC) and its surrounding sclera are biomechanically important in the pathogenesis of glaucoma, but many were limited by assumptions of tissue isotropy and homogeneity. Here, we used an improved biomechanical model driven by experimental measurements of scleral and LC collagen fiber organization to more accurately evaluate optic nerve head (ONH) biomechanics. METHODS Collagen fiber organization was quantitatively mapped across human ONH cryosections (three normal and three glaucomatous) using small-angle light scattering (SALS) and fed into two-dimensional finite element models loaded under biaxial stress to simulate raised intraocular pressure. Effects of artificial variations in collagen fiber microstructure and stiffness on LC and scleral strains were also investigated. RESULTS Scleral collagen fibers were circumferential and exhibited the highest alignment in a region not immediately adjacent to, but at a distance (400-500 μm) away from, the LC. In models, such a fiber arrangement yielded rings of low strain (second principal and effective) in the scleral region immediately adjacent to the LC. Further sensitivity analyses showed that scleral fiber alignment was crucial in determining LC strain levels. Moderate scleral anisotropy (as observed physiologically) was more effective than isotropy or high anisotropy in limiting LC and scleral strain magnitude. CONCLUSIONS The presence of a heterogeneous collagen fiber organization in the peripapillary sclera appears effective in limiting LC strain and is able to reduce strain levels at the scleral canal boundary: a transition zone prone to LC disinsertion, focal lamina cribrosa defects, and optic disc hemorrhages in glaucoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure of the Optic Nerve Head

INTRODUCTION The ocular disease glaucoma is the second most common source of blindness worldwide. Gradual, irreversible vision loss is a result of nerve damage in the optic nerve head; a collagen structure that provides support for the optic nerve and blood vessels that enter the posterior of the eye [1]. Glaucoma is clinically known to be correlated with high levels of intraocular pressure fro...

متن کامل

Microstructural Crimp of the Lamina Cribrosa and Peripapillary Sclera Collagen Fibers

Purpose Although collagen microstructural crimp is a major determinant of ocular biomechanics, no direct measurements of optic nerve head (ONH) crimp have been reported. Our goal was to characterize the crimp period of the lamina cribrosa (LC) and peripapillary sclera (PPS) at low and normal IOPs. Methods ONHs from 11 sheep eyes were fixed at 10-, 5-, or 0-mm Hg IOP and crimp periods measured...

متن کامل

Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics

Purpose To model the sensitivity of the optic nerve head (ONH) biomechanical environment to acute variations in IOP, cerebrospinal fluid pressure (CSFP), and central retinal artery blood pressure (BP). Methods We extended a previously published numerical model of the ONH to include 24 factors representing tissue anatomy and mechanical properties, all three pressures, and constraints on the op...

متن کامل

Scleral anisotropy and its effects on the mechanical response of the optic nerve head.

This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimen-specific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe...

متن کامل

Factors influencing optic nerve head biomechanics.

PURPOSE The biomechanical environment within the optic nerve head (ONH) may play a role in retinal ganglion cell loss in glaucomatous optic neuropathy. This was a systematic analysis in which finite element methods were used to determine which anatomic and biomechanical factors most influenced the biomechanical response of the ONH to acute changes in IOP. METHODS Based on a previously describ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 2015